T
==y

The following is an adventure of reverse engi-
neering the Tytera MD380, a digital hand-held ra-
dio that can be had for barely more than a hundred
bucks. In this article, I explain how to read and
write the radio’s configuration over USB, and how
to break the readout protection on its firmware, so
that you fine readers can write your own strange and
clever software for this nifty gizmo. I also present
patches to promiscuously receive audio from un-
known talkgroups, creating the first hardware scan-
ner for DMR. Far more importantly, these notes
will be handy when you attempt to reverse engineer
something similar on your own.

This article does not go into the security prob-
lems of the DMR protocol, but those are sufficiently

5

Reverse Engineering the Tytera MD380

by Travis Goodspeed KK4VCZ,
with kind thanks to DD4CR and W7PCH.

similar to P25 that I'll just refer you to Why (Spe-
cial Agent) Johnny (Still) Can’t Encrypt by Sandy
Clark and Friends.*®

8.1 Hardware Overview

SP-D- sSp+

/ Speaker

Microphone
4

1 p+r MIC

The MD380 is a hand-held digital voice radio
that uses either analog FM or Digital Mobile Radio
(DMR). It is very similar to other DMR radios, such
as the CS700 and CS750 from Connect Systems.%°

DMR is a trunked radio protocol using two-slot
TDMA, so a single repeater tower can be used by
one user in Slot 1 while another user is having a
completely different conversation on Slot 2. Just
like GSM, the tower coordinates which radio should
transmit when.

The CPU of this radio is an STM32F405 from
STMicroelectronics. This contains a Cortex M4, so
all instructions are Thumb and all function point-
ers are odd. The LQFP100 package of this chip
is used. It has a megabyte of Flash and 192 kilo-
bytes of RAM. The STM32 has both JTAG and a
ROM bootloader, but both of these are protected
by a Readout Device Protection (RDP) feature. In
Section 8.8, I’ll show you how to bypass these pro-
tections and jailbreak your radio.

There is also a radio baseband chip, the
HR C5000. At first I was reconstructing the pinout
of this chip from the CS700 Service Manual, but the
full documentation can be had from Docln, a Chi-
nese PDF sharing website. FEH&E—.

Aside from a bunch of support components that
we can take for granted, there is an SPI Flash chip
for storing the codeplug. “Codeplug” is a Motorola
term for the radio settings, such as frequencies, con-
tacts, and talk groups; I use the term here to distin-
guish the radio configuration in SPI Flash from the

Yunzip pocorgtfol0.pdf p25sec.pdf #from Proceedings of the 20th Usenix Security Symposium in 2011

60The folks at Connect Systems are nice and neighborly, so please buy a radio from them.

76

code and data in CP

c
=

2

ADC_AGND
ADC_QVINP

- |Apc_avpp3z1 T2
-, |aDC_AvDD33 G

_, |peoc_vopia
DAC_IVOUT

HPVCC ~ DvCC

HPOUT RE_TX_EN

HPGND RF_RX_EN

8 65 09

CDC_VREF - U_SCLK

MIC2N u_cs

MIc2_P u_spi

MICLN - DVDD

MICI_P U_sDO

8

CDC_AVCC F_RX_INTER

LINEOUT F_TX_INTER

MICBIAS YS_INTER

PLL_AVCC

IME_SLOT_INTER

PLL_AVSS NULL

413 12 11 10 9

HRC_5000

XTALI PWD

CKOut RESETn

&
5
&

MCLK TESTMODE

ADCDAT DVSS
BCLK C_spo

LRCK C_SCLK

20 19 18 17 16 15
wow oo

DACDAT ccs

20022 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 3B 39 40

RTS
TX_RQST
TX_RDY
DVDD
V_sDI
V_SDo
V_SCLK
v_cs
c_spi
NULL
DVSS
pvee

McBSP_RxD
McBSP_TxD

PKT_RX_WAKE

STDBY_ENABLE

8.2 A Partial Dump

From 1lsusb -v on Linux, we can see that the de-
vice implements USB DFU, most likely as a fork of
some STMicro example code. The MD380 appears
as an STMicro DFU device with storage for Internal
Flash and SPI Flash with a VID:PID of 0483:4f11.

iMac% dfu—util —list

Found DFU: [0483:df11]
devnum=0, cfg=1, intf=0,
name="@Internal Flash

/0x08000000/03%x016Kg"

[0483:df11]

alt =0,

Found DFU:

devnum=0, cfg=1, intf=0, alt=1,
name="@SPI Flash Memory
/0x00000000/16x064Kg"

Further, the .rdt codeplug files are SPI Flash
images in the DMU format, which is pretty much
just wrapper with a bare minimum of metadata
around a flat, uncompressed memory image. These
codeplug files contain the radio’s contact list, re-
peater frequencies, and other configuration info.
We'll get back to this later, as what we really want
to do is dump and patch the firmware.

Unfortunately, dumping memory from the device
by the standard DFU protocol doesn’t seem to yield
useful results, just the same repeating binary string,
regardless of the alternate we choose or the starting
position.

11
13
15
17
19
21
23
25
27

29

7

iMac% dfu—util —d 0483:dfll ——alt
firstlk.bin
Filter on vendor 0x0483 product
Opening DFU capable USB device ...
Run—time device DFU version 0Olla
Found DFU: [0483:dfl11] devnum=0,
name="@SPI Flash Memory
Claiming USB DFU Interface ...
Setting Alternate Setting #1 ...
Determining device status: state = dfuUPLOAD-IDLE
aborting previous incomplete transfer
Determining device status: state = dfulDLE,
dfulDLE, continuing
DFU mode device DFU version 0Olla
Device returned transfer size 1024
Limiting default upload to 2097152 bytes
bytes _per_hash=1024
Starting upload: [####. ####] finished!
iMac% hexdump firstlk .bin
0000000 30 1a 00 20 15 56
0000010 2d 54 00 08 2f 54
0000020 00 00 00 00 00 OO
0000030 35 54 00 08 00 0O
0000040 61 56 00 08 65 56

1 —s 0:0x200000 —-U
O0xdf1l1l
ID 0483:df11

cfg=1, intf=0, alt=1,
/0x00000000/16%064Kg"

status = 0

00
00
00
00
00

08
08
00
00
08

29
31
00
83
69

54
54
00
30
56

00
00
00
00
00

08
08

2b
00
33
37
5b

54
00

00
00
00
00
00

08
00
08
08
08

08
08

54
54
00003c¢0
00003d0
00003e0 df el df f8 10 la 09 78
00003f0 09 68 02 29 0a dl df f8

[same 1024 bytes repeated]

10
40

eb
28

01
c0

60
fo

df
e6

f8
81

34
df

la
f8

08
24
a2
00

60
Oa
29
Oa

df
00
of
02

f8
68
d1
21

lc
00
df
01

Oc
fo
f8
70

00
Oe
f8
daf

78
ff
19
f8

In this brave new world, where folks break their
bytes on the little side by order of Golbasto Mo-
marem Evlame Gurdilo Shefin Mully Ully Gue,
Tyrant of Lilliput and Eternal Enemy of Big En-
dians and Blefuscu, to break them on the little side,
it’s handy to spot four byte sequences that could be
interrupt handlers. In this case, what we’re looking
at is the first few pointers of an interrupt vector ta-
ble. This means that we are grabbing memory from
the beginning of internal flash at 0x08000000!

Note that the data repeats every kilobyte, and
also that dfu-util is reporting a transfer size of
1,024 bytes. The -t switch will order dfu-util to
dump more than a kilobyte per transfer, but every-
thing after the first transfer remains corrupted.

This is because dfu-util isn’t sending the
proper commands to the radio firmware, and it’s get-
ting the page as a bug rather than through proper
use of the protocol. (There are lots of weird variants
of DFU, created by folks only using DFU with their
own tools and never testing for compatibility with
each other. This variant is particularly weird, but
manageable.)

8.3 Tapping USB with VM Ware

Before going further, it was necessary to learn the
radio’s custom dialect of DFU. Since my Total Phase
USB sniffers weren’t nearby, I used VM Ware to sniff
the transactions of both the MD380’s firmware up-
dater and codeplug configuration tools.

I did this by changing a few lines of my VMWare
.vmx configuration to dump USB transactions out

to vmware. log, which I parsed with ugly regexes in
Python. These are the additions to the .vmx file.

monitor = "debug"
usb.analyzer.enable = TRUE
usb.analyzer . maxLine = 8192

mouse . vusb.enable = FALSE

The logs showed that the MD380’s variant of
DFU included non-standard commands. In partic-
ular, the LCD screen would say “PC Program USB
Mode” for the official client applications, but not
for any 3rd party application. Before I could do a
proper read, I had to find the commands that would
enter this programming mode.

DFU normally hides extra commands in the
UPLOAD and DNLOAD commands when the block ad-
dress is less than two. (Hiding them in blocks
OxFFFF and OxFFFE would make more sense, but if
wishes were horses, then beggars would ride.)

To erase a block, a DFU host sends 0x41 followed
by a little endian address. To set the address pointer
(block 2’s address), the host sends 0x21 followed by
a little endian address.

In addition to those standard commands, the
MD380 also uses a number of two-byte (rather than
five-byte) DNLOAD transactions, none of which exist
in the standard DMU protocol. I observed the fol-
lowing, which I still only partially understand.

Non-Standard DNLOAD Extensions

91 01 | Enables programming mode on LCD.
a2 01 | Seems to return model number.

a2 02 | Sent only by config read.

a2 31 | Sent only by firmware update.

a2 03 | Sent by both.

a2 04 | Sent only by config read.

a2 07 | Sent by both.

91 31 | Sent only by firmware update.

91 05 | Reboots, exiting programming mode.

8.4 Custom Codeplug Client

Once I knew the extra commands, I built a custom
DFU client that would send them to read and write
codeplug memory. With a little luck, this might
have given me control of firmware, but as you'll see,
it only got me half way.

)

Because I'm familiar with the code from a prior
target, I forked the DFU client from an old version
of Michael Ossmann’s Ubertooth project.®!

Sure enough, changing the VID and PID of the
ubertooth-dfu script was enough to start dumping
memory, but just like dfu-util, the result was a
repeating sequence of the first block’s contents. Be-
cause the block size was 256 bytes, I received only
the first 0x100 bytes repeated.

Adding support for the non-standard commands
in the same order as the official software, I got a
copy of the complete 256K codeplug from SPI Flash
instead of the beginning of Internal Flash. Hooray!

To upload a codeplug back into the radio, I mod-
ified the download() function to enable program-
ming mode and properly wait for the state to return
to dfuDNLOAD_IDLE before sending each block.

This was enough to write my own codeplug from
one radio into a second, but it had a nasty little bug!
I forgot to erase the codeplug memory, so the radio
got a bitwise AND of two valid codeplugs.%?

A second trip with the USB sniffer shows that
these four blocks were erased, and that the upload
address must be set to zero after the erasure.
0x00000000 0x00010000 0x00020000 0x00030000

Erasing the blocks properly gave me a tool that
correctly reads and writes the radio codeplug!

8.5 Codeplug Format

Now that I could read and write the codeplug mem-
ory of my MD380, I wanted to be able to edit it.
Parts of the codeplug are nice and easy to reverse,
with strings as UTF16L and numbers being either
integers or BCD. Checksums don’t seem to matter,
and I’ve not yet been able to brick my radios by
uploading damaged firmware images.

The Radio Name is stored as a string at 0x20b0,
while the Radio ID Number is an integer at 0x2080.
The intro screen’s text is stored as two strings at
0x2040 and 0x2054.

#seekto 0x5F80;
struct {
ul24 callid;
u8 flags ;

//DMR Account Number

//c2 private , no tone

//el group, with rz tone
char name|[32]; //U16L chars

} contacts[1000];

611n particular, I used r543 of the old SVN repository, a version from 4 July 2012.

62See PoC||GTFO 2:5.
63nttp://chirp.danplanet.com

78

CHIRP,%® a ham radio application for editing
radio codeplugs, has a bitwise library that expects
memory formats to be defined as C structs with base
addresses. By loading a bunch of contacts into my
radio and looking at the resulting structure, it was
easy to rewrite it for CHIRP.

Repeatedly changing the codeplug with the man-
ufacturer’s application, then comparing the hex-
dumps gave me most of the radio’s important fea-
tures. Patience and a few more rounds will give me
the rest of them, and then my CHIRP plugin can be
cleaned up for inclusion.

Unfortunately, not everything of importance ex-
ists within the codeplug. It would be nice to export
the call log or the text messages, but such commands
don’t exist and the messages themselves are nowhere
to be found inside of the codeplug. For that, we’ll
need to break into the firmware.

8.6 Dumping the Bootloader

Now that I had a working codeplug tool, I'd like a
cleartext dump of firmware. Recall from Section 8.2
that forgetting to send the custom command 0x91
0x01 leaves the radio in a state where the beginning
of code memory is returned for every read. This is
an interrupt table!

MD380 Recovery Bootloader Interrupts

0x20001a30 Top of the call stack.
0x08005615 Reset Handler

0x08005429 Non-Maskable Interrupt (NMI)
0x0800542b Hard Fault

0x0800542d MMU Fault

0x0800542f Bus Fault

0x08005431 Usage Fault

From this table and the STM32F405 datasheet,
we know the code flash begins at 0x08000000 and
RAM begins at 0x20000000. Because the firmware
updater only writes to regions at and after 0x0800-
€000, we can guess that the first 48k are a recovery
bootloader, with the region after that holding the
application firmware. As all of the interrupts are
odd, and because the radio uses a Cortex M4 core,
we know that the firmware is composed exclusively
of Thumb (and Thumb2) code, with no old fash-
ioned ARM instructions.

Sure enough, I was able to dump the whole boot-
loader by reading a single page of 0xC000 bytes from
the application mode. This bootloader is the one

64Transfers this large work on Mac but not Linux.

79

used for firmware updates, which can be started
by holding PTT and the unlabeled button above
it when turning on the power switch.54

This trick doesn’t expose enough memory to
dump the application, but it was valuable to me for
two very important reasons. First, this bootloader
gave me some proper code to begin reverse engineer-
ing, instead of just external behavioral observations.
Second, the recovery bootloader contains the keys
and code needed to decrypt an application image,
but to get at that decrypted image, I first had to do
some soldering.

STFM32F405

LQFP100

8.7 Radio Disassembly (BOOTO Pin)

As T stress elsewhere, the MD380 has three appli-
cations in it: (1) Tytera’s Radio Application, (2)
Tytera’s Recovery Bootloader, and (3) STMicro’s
Bootloader ROM. The default boot process is for
the Recovery Bootloader to immediately start the
Radio Application unless Push-To-Talk (PTT) and
the button above it are held during boot, in which
case it waits to accept a firmware update. There
is no key sequence to start the STMicro Bootloader
ROM, so a bit of disassembly and soldering is re-
quired.

This ROM contains commands to read and write
all of memory, as well as to begin execution at any
arbitrary address. These commands are initially
locked down, but in Section 8.8, I’ll show how to
get around the restrictions.

Thanke 7or that 5 by 9 plus, Algrere/
WE'RE UQINGAVIKINGI[HERE!

THIS IS A SWELL LAYOUT, PETE.
WISH T COULD MOVE MY SHACK
OUT OF THE
BASEMENT.

GEORGE, WHY DONT you UNSCRAMBLE YOUR-
SELF FROM THAT “"HAYWIRE"AND BUILD UPA
PROFESSIONAL LOOKING I REALLY SHOULD

XL‘STA‘;’N% o JTHAT VIKING HAS EVERYTHING

I WANT. ITS BANDSWITCHING
WITH PLENTY OF POWER,TOO!

YOU COULD PUT A NEAT LOOKING
STATION LIKE THIS IN OUR DEN, TOO!

THIS IS THE WORLD FAMOUS
VIKING TL -+ THE CHOICE OF
JUST ABOUT ONE OUT OF
EVERY FOUR
AMATEURS.

THAT'S WHAT I WANT. IT's
PROFESSIONAL IN APPEARANCE AND
DESIGN AND IT’S PACKED WITH FEATURES.

BOY! THIS KIT IS SURE COMPLETE! IT INCLUDES
EVERYTHING FROM THE WIRING HARNESS TO
THE PUNCHED CHASSIS «+*AND THOSE STEP-
BY-STEP INSTRUCTION PICTURES

---AND
IT CERTAINLY WAS QA é:(NECI:I
ECONOMICAL, TO W|RE,

LIKE? I'M REALLY SOLD ON THE VIKING'S

!
PERFORMANCE: /" GEORGE, IT's GREAT!! T
SEE YOU TOOK MY ADVICE AND GOT A /

VIKING VFO, ALSO. J AND EVEN IN THE

SAME ROOM WE NEVER
HAVE TELEVISION
INTERFERENCE.

»‘)‘
-

>

i/

=

VIKING 11

@ TRANSMITTER KIT

e 10 Thru 160 Meters
e 180 Watts CW Input

e 150 Watts Phone Input
Available wired and tested, with tubes . . . oras a
complete kit, the Viking Il is today’s most popular
amateur transmitter.
Cat. No. 240-102. Complete with tubes, $279.50
less crystals, key and mike. Amateur Net
Cat. No. 240-102-2. Wired and tested $337.00

with tubes, less crystals, key and mike. Amateur Net

e e e e e e e e e e e e e e e . . e e . S e e

E. F. JOHNSON COMPANY
288 Second Ave. S. W., Waseco, Minnesota

Please send me a copy of Catalog No. 714, containing o
complete written and pictorial description of the Viking Il.

<X>O00O- l‘~—>§

NAME

ADDRESS
cry

80

To open your radio, first remove the battery and
the four Torx screws that are visible from the back
of the device. Then unscrew the antenna and care-
fully pry off the two knob covers. Beneath each knob
and the antenna, there are rings that screw in place
to secure them against the radio case; these should
be moved by turning them counter-clockwise using
a pair of sturdy, dull tweezers.

Once the rings have been removed, the radio’s
main board can be levered up at the bottom of the
radio, then pulled out. Be careful when removing it,
as it is attached with a Zero Insertion Force (ZIF)
connector to the LCD/Keypad board, as well as by
a short connector to the speaker.

The STMicro Bootloader is started by pulling
the BOOTO pin of the STM32F405 high while
restarting the radio. I did this by soldering a thin
wire to the test pad near that pin, wrapping the
wire around a screw for strain relief, then carefully
feeding it out through the microphone/speaker port.

(An alternate method involves removing
BOOTO0’s pull-down resistor, then fly-wiring it to
the pull-up on the PTT button. Thanks to tricky
power management, this causes the radio to boot
normally, but to reboot into the Mask ROM.)

—_

11

8.8 Bootloader RE

Once I finally had a dump of Tytera’s bootloader,
it was time to reverse engineer it.%>

The image is 48K in size and should be loaded to
0x08000000. Additionally, I placed 192K of RAM
at 0x20000000. It’s also handy to create regions for
the I/O banks of the chip, in order to help track
those accesses. (IDA and Radare2 will think that
peripherals are global variables near 0x40000000.)

After wasting a few days exploring the command
set, I had a decent, if imperfect, understanding of
the Tytera Bootloader but did not yet have a clear-
text copy of the application image. Getting a bit
impatient, I decided to patch the bootloader to keep
the device unprotected while loading the application
image using the official tools.

I had to first explore the STM32 Standard Pe-
ripheral Library to find the registers responsible for
locking the chip, then hunt for matching code.

/% STM32F4xx flash regs from stm32f4zx.h x/
#@0x40023¢00

typedef struct {
_ IO uint32_t ACR; //access ctrl 0x00
IO uint32 t KEYR; //key 0x04
IO uint32_ t OPIKEYR; //option key 0z08
IO uint32 t SR; //status 0z0C
_ IO uint32 t CR; //control 0x10
_ IO uint32_t OPTCR; //option ctrl 0x14
_ IO uint32 t OPTCR1; //option ctrl 1 0x18

} FLASH;

65The MD5 of my image is 721df1£98425b66954da8be58c7e5d55, but you might have a different one in your radio.

81

The way flash protection works is that byte 1
of FLASH->0PTCR (at 0x40023C15) is set to the pro- /

*

Sets the read protection level.

x* OB RDP specifies the protection level.
tection level. OxAA is the unprotected state, while 3| . — AA: No protection.
0xCC is the permanent lock. Anything else, such as * 55: Read protection memory.
0x55, is a sort of temporary lock that allows the °| * CC: Full chip protection.
application to be wiped away by the Mask ROM I WARNING: Ixh?: Z:albol;Zirogfong}Zbgzvfol 5210
bootloader, but does not allow the application to be * back to level 1 or 0.
read out. 9 */

void FLASH OB_RDPConfig(uint8 t OB_RDP){

11 FLASH Status status = FLASH COMPLETE;
Tytera is using this semi-protected mode, so you 13| 4 Check th y
. . . * eck the parameters x*

can pull the BOOTO pin of the STM326F6‘4XX .Chlp high assert param (IS OB RDP(OB RDP)) ;

to enter the Mask ROM bootloader.®® This process 15 - - - -

is described in Section 8.7. status = FLASH WaitForLastOperation () ;
17| if(status — FLASH COMPLETE)

(_ IO uint8 tx)

Sure enough, at 0x08001FBO, I found a function 19 OPTCR_BYTE! ADDRESS = OB_RDP;

that’s very much like the example FLASH_OB_RDP- }

Config function from stm32f4xx_flash.c. I call
the local variant rdp_lock().

66 Confusingly enough, this is the third implementation of DFU for this project! The radio application, the recovery bootloader,
and the ROM bootloader all implement different variants of DFU. Take care not to confuse the them.

82

This function is called from main() with a pa-
rameter of 0x55 in the instruction at 0x080044A8.

0x080044a0

0x080044a4 0028 cmp r0, O

0x080044a6 04d1 bne 0x80044b2

| ; Change this immediate from 0z55 to OzAA

| ; to jailbreak the bootloader

| 0x080044a8 5520 movs r0, 0x55

| 0x080044aa fdf781fd bl rdp lock

| 0x080044ae fdf78bfd bl rdp applylock

‘—> 0x080044b2 fdf776fd bl 0x8001fa2
0x080044b6 00f097fa bl bootloader pin_test

fdf7a0fd bl rdp_isnotlocked

Patching that instruction to instead send OxAA
as a parameter prevents the bootloader from lock-
ing the device. (We're just swapping aa 20 in where
55 20 used to be.)

iMac% diff old.txt
< 00044a0 fd 7 a0
55 20 fd

jailbreak . txt
fd 00 28 04 d1
f7 81 fd fd {7

> 00044a0 fd f7 a0

aa 20 fd

fd
f7

00
81

28 04 d1
fd fd {7

8.9 Dumping the Application

Once I had a jailbroken version of the recovery boot-
loader, I flashed it to a development board and in-
stalled an encrypted MD380 firmware update using
the official Windows tool. Sure enough, the appli-
cation installed successfully!

After the update was installed, I rebooted the
board into its ROM by holding the BOOTO pin high.
Since the recovery bootloader has been patched to
leave the chip unlocked, I was free to dump all of
Flash to a file for reverse engineering and patching.

8.10 Reversing the Application

Reverse engineering the application isn’t terribly dif-
ficult, provided a few tricks are employed. In this
section, I'll share a few; note that all pointers in
this section are specific to Version 2.032, but similar
functionality exists in newer firmware revisions.

At the beginning, the image appears almost en-
tirely without symbols. Not one function or system
call comes with a name, but it’s easy to identify
a few strings and I/O ports. Starting from those,
related functions—those in the same .C source file—
are often located next to one another in memory,
providing hints as to their meaning.

67unzip pocorgtfol0.pdf hrc5000.pdf

83

The operating system for the application is an
ARM port of MicroC/OS-II, an embedded real-time
operating system that’s quite well documented in
the book of the same name by Jean J. Labrosse. A
large function at 0x0804429C that calls the operat-
ing system’s 0STaskCreateExt function to make a
baker’s dozen of threads. Each of these conveniently
has a name, conveniently describing the system in-
terrupt, the real-time clock timer, the RF PLL, and
other useful functions.

As T had already reverse engineered most of the
SPI Flash codeplug, it was handy to work backward
from codeplug addresses to identify function behav-
ior. 1 did this by identifying spiflash_read at
0x0802fd82 and spiflash_write at 0x0802fbea,
then tracing all calls to these functions. Once these
have been identified, finding codeplug functions is
easy. Knowing that the top line of startup text is 32
bytes stored at 0x2040 in the codeplug, finding the
code that prints the text is as simple as looking for
calls to spiflash_read(&foo, 0x2040, 20).

Thanks to the firmware author’s stubborn in-
sistence on l-indexing, many of the structures in
the codeplug are indexed by an address just be-
fore the real one. For example, the list of ra-
dio channel settings is an array that begins at
0x1ee00, but the functions that access this array
have code along the lines of spiflash_read(&foo,
64*xindex+0xledcO, 64).

One mystery that struck me when reverse engi-
neering the codeplug was that I didn’t find a missed
call list or any sent or received text messages. Sure
enough, the firmware shows that text messages are
stored after the end of the 256K image that the radio
exposes to the world.

Code that accesses the C5000 baseband chip can
be reverse engineered in a similar fashion to the
codeplug. The chip’s datasheet®” is very well han-
dled by Google Translate, and plenty of dandy func-
tions can be identified by writes to C5000 registers
of similar functions.

Be careful to note that the C5000 has multiple
memories on its primary SPI bus; if you’re not care-
ful, you’ll confuse the registers, internal RAM, and
the Vocoder buffers. Also note that a lot of registers
are missing from the datasheet; please get in touch
with me if you happen to know what they do.

Finally, it is crucially important to be able to
sort through the DMR packet parsing and construc-
tion routines quickly. For this, I've found it handy

[\

10

12

to keep paper printouts of the DMR standard, which
are freely available from ETSIL.® Link-Local ad-
dresses (LLIDs) are 24 bits wide in DMR, and you
can often locate them by searching for code that
masks against OxFFFFFF .6

8.11 Patching for Promiscuity

While it’s fun to reverse engineer code, it’s all a
bit pointless until we write a nifty patch. Complex
patches can be introduced by hooking function calls,
but let’s start with some useful patches that only re-
quire changing a couple of bits. Let’s enable promis-
cuous receive mode, so the MD380 can receive from
all talk groups on a known repeater and timeslot.

In DMR, audio is sent to either a Public Talk-
group or a Private Contact. These each have a 24-bit
LLID, and they are distinguished by a bit flag else-
where in the packet. For a concrete example, 3172 is
used for the Northeast Regional amateur talkgroup,
while 444 is used for the Bronx TRBO talkgroup. If
an unmodified MD380 is programmed for just 3172,
it won’t decode audio addressed to 444.

There is a function at 0x0803ec86 that takes a
DMR audio header as its first parameter and decides
whether to play the audio or mute it as addressed
to another group or user. I found it by looking for
access to the user’s local address, which is held in
RAM at 0x2001c65¢c, and the list of LLIDs for in-
coming listen addresses, stored at 0x2001c44c.

To enable promiscuous reception to unknown
talkgroups, the following talkgroup search routine
can be patched to always match on the first el-
ement of listengroup[]. This is accomplished
by changing the instruction at 0x0803ee36 from
Oxdlef (JNE) to 0x46c0 (NOP).

A similar JNE instruction at 0x0803ef10 can be
replaced with a NOP to enable promiscuous recep-
tion of private calls. Care in real-world patches
should be taken to reduce side effects, such as by
forcing a match only when there’s no correct match,
or by skipping the missed-call logic when promiscu-
ously receiving private calls.

8.12 DMR Scanning

After testing to ensure that my patches worked, I
used Radio Reference to find a few local DMR sta-
tions and write them into a codeplug for my mod-
ified MD380. Soon enough, I was hearing the best
gossip from a university’s radio dispatch.”™

Later, I managed to find a DMR network that
used the private calling feature. Sure enough, my
radio would ring as if I were the one being called,
and my missed call list quickly grew beyond my two
local friends with DMR radios.

8.13 A New Bootloader

Unfortunately, the MD380’s application consumes
all but the first 48K of Flash, and that 48K is con-
sumed by the recovery bootloader. Since we neigh-
bors have jailbroken radios with a ROM bootloader
accessible, we might as well wipe the Tytera boot-
loader and replace it with something completely
new, while keeping the application intact.

Luckily, the fine folks at Tytera have made
this easy for us! The application has its own
interrupt table at 0x0800C000, and the RESET
handler—whose address is stored at 0x0800C004—
automatically moved the interrupt table, cleans up
the stack, and performs other necessary chores.

for (i = 0; i < 0x20u; ++i){
if ((listengroup|i] & OxFFFFFF)
= dst_1lid_adr) {
something 16;
recognized 1lid dst = dst 1llid adr;
current_1lid_group = var_lgroup[i+16];
sub_803EF6C () ;
dmr_squelch_thing = 9;
if (x(v4d + 4) & 0x80)
byte 2001D0CO |= 4u;
break;

11

13

//Minimalist bootloader.

void main(){
//Function pointer to the application.
void (xappmain) () ;
//The handler address
//interrupt table.
uint32 t xresethandler =

(uint32 t=) 0x0800C004;

//Set the function pointer to that wvalue.
appmain (void (%) ()) *resethandler;
//Away we go!
appmain () ;

is the stored in the

68ETSI TS 102 361, Parts 1 to 4.

69In assembly, this looks like LSLS r0, r0, #8; LSRS r0, r0, #8.
70Two days of scanning presented nothing more interesting than a damaged elevator and an undergrad too drunk to remember
his dorm room keys. Almost gives me some sympathy for those poor bastards who have to listen to wiretaps.

84

8.14 Firmware Distribution

Since this article was written, DD4CR has managed
to free up 200K of the application by gutting the
Chinese font. She also broke the (terrible) update
encryption scheme, so patched or rewritten firmware
can be packaged to work with the official updater
tools from the manufacturer.

Patrick Hickey W7PCH has been playing around
with from-scratch firmware for this platform, built
around the FreeRTOS scheduler. His code is al-
ready linking into the memory that DD4CR freed
up, and it’s only a matter of time before fully-
functional community firmware can be dual-booted

on the MD380.

In this article, you have learned how to jailbreak
your MD380 radio, dump a copy of its application,
and begin patching that application or writing your
own, new application.

Perhaps you will add support for P25, D-Star,
or System Fusion. Perhaps you will write a proper
scanner, to identify unknown stations at a whim.
Perhaps you will make DMR, adapter firmware, so
that a desktop could send and receiver DMR frames
in the raw over USB. If you do any of these things,
please tell me about it!

Your neighbor,
Travis

Electronic Technicians and Engineers :

EARN UP TO $8,000 A YEAR

in field work with the RCA Service Company

Your education and experience may qualify
you for a position with RCA, world leader in
electronics. Challenging domestic and overseas
assignments involve technical service and
advisory duties on computers, transmitters,
receivers, radar, telemetry, and other electronic
devices. Subsistence is paid on most domestic
field assignments—subsistence and 309, bonus
on overseas assignments. All this in addition to
RCA benefits: free life insurance and hospitali-
zation plan—modern retirement program—
Merit Review Plan to speed your advancement.

Now . .. Arrange Your
Local RCA Interview...

and get additional information
by sending a resume of your
education and experience to:

Mr. John R. Weld,
Employment Manager
Dept. Y-1A, Radio
Corporation of America
Camden 2, N. J.

RCA SERVICE COMPANY, INC.

A Radio Corporation of America Subsidiary

85

28 ol
smmmmmmmuum, caas| cass| cand
3]
202222440 58 03] 105] 108
- 3v3
RIS A
220RS —— BAT30!
— - MS412F-FL26E
3v3 r—r—
4 G5 306 307 [caos [car2 [c313
.|=l_ “Tos "o+ TTios o3 "ios
18liol TP301
Il i \G_SWCLK ——
NOTbEgOTNOT-NDYO LI OO ONE -
200pRR000DD SfiSddaan R391
$ A S s
Sk > MICPWR_SW
Sk S
Tt
ogx‘wéw PA10 PA14
veovee swi e PAY 128 FS LCD D:
ECNZ 68| par PC 125_CK FPC301 LCD D6
EcNe 48 {pgqo PC11 128 RX PTT_PAD| _K3
ECNL_47 1pers PC12[125
ECNO a6 o2 00| Sl RIT ANTE =25 o,) Py
PE13 D12 RIZAAIKC —_cp D3 R0 341
PE12 o283 RIOAAIK 5,
Ras6 (SR PETT U301 [RN VIS -) A
LCD D7 AN PE10 STMB2F405VGT6 CD_RD 3v3 —
LCD_Dé: R358 W 7 PE9 PD CD_WR -
LCD_D5: W PE8 PD6| Lco_cs —
LCD_D4+ R0 PE7 PD7 LAdl o
) vV PB2 FLASH SCLK
FLASH SDO
BUSY| PB1 FLASH SDI R305
PBO T NC
R313: PC5
10K DA
PC4 PBY7,
BOOT(D 55%
SPK_C
L»Ro
— —RXIED Ra06
PE1 |5 o 10K
PAT1 2
m,w,w PA 3v3
o 88 — %
El S =
£, q5:88%
28582z9lnn58835858
g8 £8053048s s , I L.
= T vee Nef— SUKT KT U307 o4
veet |2 HR V300
= 4 5 Lty 44 sDA VDD —
cas2 == out B
I —] MM mE W v T e 3 scL vep
2TETOTHF. Q.:AU|_ - 5| cago—— » PSTO124 GNIRSTO HL
=1 U i 5 L
4 =
R34y R340 R339 36 L[]8 R303A AATOK TB305 =
2K2 26 KT A - Zle|e W JTAG RESET -
voL.ou AW W V ! 8l —
- Al J5EE S -
T B e g m
P4] 17
305 |g588 o “w m,
53 Yo S 2 9
— Ru — R3B = & "3 t 8
22K 15K H -
cremes oudF AN AN 7 3
nwmwlﬁl I—lmm“mn s E c
183 S Y XYY
-3 §8 3oy
! 4 ¢ o d9
— — 3 3
- - M Ta8%e
Mo X301 __8MHz U35
=
R364, NC R365 NC K
opnos sy FLASH SDI
Q303 HnowmN owm A RESET# VIORFU H4
Ne C34 350 44 by NC 3 s
BAT+ NC NC = DNU (42
ELASHCS2 81 coon DNU !
FLASHCST 7]
— = FLASH S50 s pn al S oS =l W
- - 2 - = R347 R367
A = - NC NC
R314 R315 - - —
180R 220R -
SW302 R3I6SRITTSRIIESRIID>
— - CODE-SWITCH §mv a7k t_muv t_mv U302 av3
2 26 W25Q128FVSIG A
& Jat2 6 2sQI28FVSIS
£t g T e s
3 ELASHCSO 1iceny voc
4 C320
EASHSDO 2|on poron | ZREWAAR I_l§
RX LED IXLED 316_E317_lcats_eato
E31e_ks317_kate_k3 ELASH SCIK_ 6 3 RZY A AT —
Q301 Q302 53 o3 —Tos o3 SCK W Mode!: Designer: PETER
DTC144€l ITC144EE ELASH SDI 5 4 p— Check:
\H! Pl Approve:
- - - - REV: 10 | Page: | 3of 6 | DATE: 2014.08.11

86

11807102 31va 9z [@bed | 01
:anoiddy
0840
¥313d uaubisaq
mQH
6720
EoJo>AU|>>\.|m_
i
[T
— 31585201
€0zn
%&.ﬁuﬁ
Q0A"HNG
07l 3311010
o L1,
20
A
W
_ 001
= iz
voL Mot
29520
ON 6628 oo
e LT s
20ezls s
ezl 1920
z0ez1s T
oL
7z 0524 L
»ids™ua [{l- T -
AEg/Hn00L
o) = Tvl
voL] | vor

N
Prza]

o1
o0 vezy

oN NNIOOY 1 noy
9zed x|

ene

9820[82| 1829

e9z0 1 1ozy

11nd1N0 LN g

00 LLNdNI

2UNd1N0 ZLNdNI fg—

ane ziN .l T
b 01/3n01

Qzzsoval
voen

Lo
==, 1620
anNo 1Mo
ON 00A
TG & A
10cx <
<<
ene 855
850
| i i e ik
<<<<89BBRIs55 01 S Yo
P en0288rP2n
AOLINOL €04 wxmmm,s,om,mmm.mw eccs reced
8220 T~ 1223 A S T LhAL
222
¥ 3un0ad® 3 aco e 300w 13l |
o NI1si8a
£ dNIArOaY
£10s 0 1vaoav =
0as 0 TN 51— 10l _Lnouno
5108 0 Nl pr €20 5
o Soale _ * sl eol s
1075 3L 00050 4H MS 0000
SAS Loen 21000000
NIXL 3 02100V 0aY
NI 3 I'2LaaAY 00
0as n Z1aan
1as n 21d0A
5108 N £800A 0000
0 N _€600AY Ova
LNOdH 1"6600AY 00V
I'o8A 0av 0 €200V 0aY
LNO3NI €600 Tid
LNOAD Ova = 00AV 000
lnonovEz 8255 3
88855
2895225 z
88280 EES
Bo8os]
Py 83
SEFLRE 'z'z
TeaTraTnalolo] o) =
[P
H EEi =
- — % 03 _ - _
Bl = = = M !
3 2
wl o j sl sof eo| sof em| sol eo] eof _fvor_[nownor
m %, vl v v820] €820| 2820 1820] 08Z0] 620] 8220 93] Peeo | 4620
:nm_ 9& s oD
= il
SL09SVBIN 18
8021
€AE eneY
Lo
Seved
S
P+Lva
sizzodiznta
1021
- - = mswmod< Tﬂm wuN”
f T <Jinoon
HOLWS 0N
20l = oS
0920 =~ €4 o +lva
120
AAA 11

87

